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Application of Brent's Theorem to our Optimization of Prefix-Sum

= Assume that the optimized version loads f floats into local registers

= Work complexity:
= Without optimization: Wj(n) = 2n

e
‘h
|
S
~~
—t
_|_
I[N
—

= With optimization: ~ Wh(n) = 27 +
= Depth complexity:

= Without optimization: D;(n) = 2 log(n)

= With optimization: ~ D(n) = 2log(z) +f = 2logn — 2logf + f
= |f f=2, then W, = W and Dy = D,, i.e., we gain nothing

= |f f> 2, speedup of version 2 (opt.) over version 1 (original):

To(n) 52 +Dun) 27 2f
Tu(n) ) pyn) ~ 2(142)  F+2

Q
|

Speedup(n) =

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum
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Y Other Consequences of Brent's Theorem

Obviously, Speedup(n) < p

" In the sequential world, time = work: Ts(n) = Ws(n)

In the parallel world: Tp(n)

Zet) 1 D(n)

Ts(n) _ _ Ws(n)
Te(n) — 224 D(n)

= Our speedup is Speedup(n)

Assume, Wp(n) € 2( Ws(n))

i.e., our parallel algorithm would do asymptotically more work

Ws(n)
Q2( Ws(n)) + D(n)

because, on real hardware, p is bounded

" Then, Speedup(n) = >0 as n — o

= This is the reason why we want work-efficient parallel algorithms!
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Now, look at work-efficient parallel algorithms, i.e.

Wr(n) € ©( Ws(n))

Then, ooedun(m — W) pW(n)
peedup(n) = w7 +D(n)  W(n)+ pD(n)

In this situation, we will achieve the optimal speedup of p,

so long as ;
) O%V((n)))

Consequence: given two work-efficient parallel algorithms, the
one with the smaller depth complexity is better, because we can
run it on hardware with more processors (cores) and still obtain a
speedup of p over the sequential algorithm (in theory).

We say this algorithm scales better.

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum
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Y

Limitations of Brent's Theorem

= Brent's theorem is based on the PRAM model

= That model makes a number of unrealistic assumption:
= Memory access has zero latency
= Memory bandwidth is infinite
= No synchronization among processors (threads) is necessary

= Arithmetic operations cost unit time

= With current hardware, rather the opposite is realistic

G. Zachmann Massively Parallel Algorithms SS ' June 2014
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W Radix Sort, Based on the Split Operation

= The split operation: rearrange elements according to a flag

1 0 0 1 0 0 1 0 [<—Flags.
"y - There could be

ﬁ ﬁ payload data, too
(omitted here)
1 1 1

0[O 0 0 0

= Note: split maintains order within each group! (i.e., it is stable)
= Radix sort (massively parallel):

radix sort( array a, int len ):
for i = 0...numbits-1: // important: go from low to high bit!

split(i, a) // split a, based on bit i of keys
where split (i,a) rearranges a by moving all keys that have
bit i = 0 to the bottom, all keys that have bit i =1 to the top

(lowest bit = bit no. 0)

= Reminder: stability of split is essential!
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Y  Algorithm for the Split Operation

= Split's job:

= Determine new index for each element &

= Then perform the permutation

al.

= Algorithm (by way of an example):

= Consider lowest bit of the keys

1. Compute "0"-scan (exclusive):
fi=#"0"sin (aop, ..., Gi-1)
2. Set F = total number of "0O"s
fo1+1 a,.1=0
fn—1 ap—1 =1
3. Ifaj=0 — new pos. d =T;
4. Ifaj=1 —new pos.d=F+ (i—f;)

- Because i—fj=# "1"s to the left of i

G. Zachmann

f:
F=4

dforors:

dforr1vs:

d:

Massively Parallel Algorithms SS ' June 2014

P

0 1 2 3 4 5 6 /
4 7 2 6 1 5 1 0
] 7

/ Y | ( Y w

4 2 6 0 7 1 5 1

0 1 2 3 4 5 6 7
100|111 |1010|110|{001 (101|001 | 000

0 1 1 2 3 3 3 3

0 1 2 3

4+(1-1) 4+(4-3)4+(5-3)4+(6-3)

0 4 1 2 5 6 7 3
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= A conceptual algorithm for the "0"-scan:

] .
Extract the relevant bit a: [100{111|010|110|001 | 101 | 001 | 000

(conceptually only)

= |nvert the bit a:| 1 1o | 1 11010101

= Compute regular scan

with +-operation f:loj 1|1 |2]3]3]3]3

" |In a real implementation, you would, of course, implement this
as a native "0"-scan routine!
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W Stream Compaction

VR =

>
..
e

= Given: input stream A, and a flag/predicate for each ag;
= Goal: output stream A' that contains only a;'s, for which flag = true

= Example:

= Given: array of upper and a|AX]C]PIHIW]B|Z

lower case letters

= Goal: delete lower case letters

and compact the upper case

to the low-order end of the array
= Solution:

= Just like with the split operation, except we don't compute indices for the
"false" elements

" Frequent task: e.g., collision detection,

= Sometimes also called list packing, or stream packing

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum 45



eeeeee

U Summed-Area Tables / Integral Images §

= Given: 2D array T of size wxh

= Wanted: a data structure that allows to compute

i )2

> Y Tk )

k=i I=h
forany i1, i2,j1,j2 in O(1) time

J2

J1

i1 i2

G. Zachmann Massively Parallel Algorithms SS ' June 2014
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= The trick:

b )2 2 i 2 b N
D2 Tki)= T(k 1) - T(k, 1) — T(k, 1)
k=i I=j; k=1 I=1 k=1 I=1 k=1 I=1
N
T Z T(k’ /) Lookups in
k=1 I=1 Summed Area Table §
= Define
i
S(ij)=>)_ Y T(kI
k=1 I=1
= With that, we can rewrite the sum: (0,0)

ZZZT k. 1) = S(i2, jo) — S(i1, j2) — S(i2, j1) + S(i1. j1)

k=i1 I=j1
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= Definition:
Given a 2D (k-D) array of numbers, T, the summed area table §
stores for each index (i,j) the sum of all elements in the rectangle

(0,0) and (i,)) (inclusively):

= Like prefix-sum, but for higher dimensions

S(i.) =3 T(k)

k=1 I=1

" |n computer vision, it is often called integral image

= Example:

G. Zachmann

Input
24 1 Of O
O 14 2| ©
HEHE
[ 1] 1] o 2

Massively Parallel Algorithms

SS

v June 2014

Summed Area Table

41 911214
214 of|f 9111
21 5| 6| 8
1 2 4

e -
. co :$
VR X

Prefix-Sum 50



eeeeee

. cc =
VR

" The algorithm: 2 phases (for 2D)
1. Do H prefix-sums horizontally -
—_>
2. Do W prefix-sums vertically
- Real implementation (to maintain coalesced memory access):
prefix-sum vertically, transpose, prefix-sum vertically [ l l
- Or use texture memory

= Depth complexity for k-D (assume w = h, and "native"
horizontal prefix-sum, i.e., no transposition):

k-W log W

= Caveat: precision of integer/floating-point arithmetic
= Assumption: each Tj needs b bits
= Consequence: number of bits needed for S,,, = logw + logh + b

= Example: 1024x1024 grey scale input image, each pixel = 8 bits
— 28 bits needed in S-pixels
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Increasing the Precision

= The following techniques actually apply to prefix-sums, too!

1. "Signed offset" representation:
= Set _
T'(i,j)=T(ij)-t
where t = average of T = - "7 ST ))
= Effectively removes DC component from signal

= Consequence:

I

i)=Y Y T'(k1)=S(ij)—ijt

k=1 I=1

i.e., the values of S’ are now in the same order as the values of T
(less bits have to be thrown away during the summation)

= Note 1: we need to set aside 1 bit (sign bit)

= Note 2: §'(w,h) =0 (modulo rounding errors)

G. Zachmann Massively Parallel Algorithms SS ' June 2014
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= Example:

Improved precision
Input image Original summed area table using "offset" representation

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum 53



eeeee

2. Move the "origin" of the i,j "coordinate
frame":

= Compute 4 different S-tables, one for each
quadrant

= Result: each S-table comprises only % of the
pixels/values of T

= For computation of Zi;f:,-l LT (k1)

I=j
do a simple case switch

G. Zachmann Massively Parallel Algorithms SS 1 June 2014
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]

i
afi3:

v

 J

J2

J1

v

I

2
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Y Results

With methods 1 & 2

= Compute integral
image
= From that, compute
5(i.J)
=5(i = 1,J)
=5(i,j—1)
+S(i—1,j—1)
= |.e., 1-pixel box filter

= Should yield the
original image
(theoretically)
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Y Efficient Computation of the Integral Image

= Naive approach: do a 1D prefix-sum per row — O (VN log N)
depth complexity (assuming we omit the matrix transposition
step) and O(VN -v/N') = O(N) work complexity,
where input image has size nxn = N pixels

= Better solution:
= Pack all rows into one linear array of size N
= Do a 1D prefix-sum, but only the first n levels

— O(log N) depth complexity
= Work complexity = O(N)

= |s a special n levels
up- and
case Of down-
segmented SWEEP
prefix sum ——— "
Row 1 Row 2 Row n
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Y Applications of the Summed Area Table

= For filtering in general

= Simple example: box filter
= Compute average inside a box (= rectangle)

= Slide box across image (convolution)

= Application: translucent objects, i.e., transparent & matte
= E.g., milky glass
1. Render virtual scene (e.g., game) without translucent objects
2. Compute summed area table from frame buffer

3. Render translucent object (using fragment shader): replace pixel
behind translucent object by average over original image within a
(small) box

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum
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Rendering with Depth-of-Field (Tiefenunscharfe)

1. Render scene, save color buffer and z-buffer (e.g., in texture)

2. Compute summed area table over color buffer

3. For each pixel do in parallel:
1. Read depth of pixel from saved z-buffer ®

2. Compute circle of confusion (CoC)

(for details see "Advanced CG")

3. Determine size of box filter

4. Compute average over
saved color buffer within box

5. Write in color buffer

= Note: "For each pixel in parallel"
could be implemented in OpenGL
by rendering a screen-filling quad using special fragment shader

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum

59



Bremen

5 i
@ TR

)
«
]

= Result:
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Y Artifacts of this Technique -

= False sharp silhouettes: blurry objects (out of focus) have sharp
silhouette, i.e., won't blur over sharp object (in focus)

= Color bleeding (a.k.a. pixel bleeding): areas in focus can
incorrectly bleed into nearby areas out of focus

= Reason: the (indiscriminate) gather operation
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Y  Depth-of-Field with Scattering

= Goal: turn gather operation into scatter operation

orig.
0.2/0.5{0.7{0.5|0.2 image 0.2{0.5/0.7]0.5(0.2
blurred
0.42 image 0.14/0.14/0.14/0.14/0.14
f \ y )
average gathered over CoC one pixel scattered over CoC

= Example: scatter one pixel using the 2D prefix-sum (integral image)

Input image with one pixel set Pixel value spread to the Resulting 2D prefix-sum
and its "circle"-of-confusion corners of the rectangle = pixel scattered over CoC
] +0.1 -0.1 0.1f0.1]0.1
0.9 0.1/0.1{0.1
0.1[0.1(0.1
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Algorithm

1. Phase: for each pixel in original image do in parallel
« Spread pixel value

to CoC corners

area(CoC)
- Use atomic accumulation operation ! ] .l .
- Do this for each R, G, and B channel m " - ) g™
2. Phase: compute 2D prefix-sum, m E
result = blurred image
L] L]

= Question: can you turn phase 1 into a gather phase?

G. Zachmann Massively Parallel Algorithms SS ' June 2014
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Result

—

Scattering and 2D prefix-sum

Summed area table and gathering

[Kosloff, Tao, Barsky, 2009]
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U Recap: Texture Filtering in Case of Minification 8'§

\'%
A

= What happens, when we "zoom
away" from the polygon?

\J
=

Minification
~ (texels are small
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Optional

= Linear interpolation does not help very much:

j cG

VR

= Needed would be an averaging of all texels covered by the pixel
(in uv-space); too costly in real-time

= Solution: pre-processing — MIP-Maps
(lat. "multum in parvo" = Vieles im Kleinen")

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum
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Optional
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VR

= A MIP-Map is just an image pyramid:
= Each level is obtained by averaging
2x2 pixels of the level below

- Consequence: the original image must
have size 2"'x2""  (at least, in practice)

= You can use more sophisticated ways

of filtering, e.g., Gaussian

= Memory usage for MIP-Map: 1.3x
original size

64x64

128x128 32x32

256x256

LODO LOD1 LOD2 LOD3
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Y  Anisotropic Texture Filtering B
" Problem with MIPmapping: doesn't take the 0
"shape" of the pixel in texture space into account! | V4
[l 1A
— ! VA
e B E l / exture
- 3 i
B N | {
- _ R [N
. screen
HEEN

= MIPmapping just puts a square box around
the pixel in texture space and averages
all texels within

= Solution: average over bounding rectangle

= Use Summed Area Table for quick summation

= Question: how to average over highly "oblique" pixels?
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Optional
= This is one kind of anisotropic texture filtering

= Result:

Mipmapping

@)
c
=
]
=
=
©)
Z

Summed area table
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Optional

= Another example:

Mipmapping Anisotropic

—

mmmm|

mmmm

= Today: all graphics cards support anisotropic filtering (not

necessarily using SATS)

G. Zachmann Massively Parallel Algorithms SS ' June 2014
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@ Application: Face Detection

= Goal: detect faces in images

EEED
III

digital camera

= Requirements (wishes):

= Real-time or close (> 2 frames/sec)

= Robust (high true-positive rate, low false-positive rate)

= Non-goal: face recognition

" |n the following: no details, just overview!

G. Zachmann
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~ "False positive" from
human point of view
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= The term feature in computer vision:

= Can be literally any piece of information/structure present in an image
(somehow)

= Binary features — present / not present;
examples:

- Edges (e.g., gradient > threshold)
- Color of pixels is within specific range (e.g., skin)
- Ellipse filled with certain amount of skin color pixels

= Non-binary features — probability of occurrence;
examples:

- Gradient image

- Sum of pixel values within a shape, e.g., rectangle

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum
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g
W  The Viola-Jones Face Detector [2002] -

= The (simple) idea:

= Move sliding window across image
(all possible locations, all possible sizes)

= Check, whether a face is in the window

= We are interested only in windows
that are filled by a face

= Observation:

= Image contains 10's of faces

= But ~108 candidate windows
= Consequence:

= To avoid having a false positive in every image,
our false positive rate has to be < 106
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= Feature types used in the Viola-Jones face detector:

= 2, 3, or 4 rectangles placed next to each other

= Called Haar features

. . 6 reads from the
Feature value := g; = integral image

pixel-sum( white rectangle(s) ) —

pixel-sum( black rectangle(s) )

= Constant time ?nigg?;fizg“gtehe m

per feature extraction

" |n a 24x24 window, there are
~160,000 possible features

- All variations of type, size, location within window
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" Define a weak classifier for each feature:

+1  8i > 9,’
—1 else

f =

= "Weak" because such a classifier is only
slightly better than a random "classifier"

= Goal: combine lots of weak classifiers to form one strong classifier

F(window) = asf; + axfh + . ..
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= Use learning algorithms to automatically find a set of weak
classifiers and their optimal weights and thresholds, which
together form a strong classifier (e.qg., AdaBoost)

= More on that in AI & machine learning courses
= Training data:
= Ca. 5000 hand labeled faces

- Many variations (illumination, pose, skin color, ...)
= 10000 non-faces
= Faces are normalized (scale, translation)
= First weak classifiers with largest weights
are meaningful and have high
discriminative power:

= Eyes region is darker than the upper-cheeks

= Nose bridge region is brighter than the eyes
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| No
‘ Maybe
-
Maybe
= Typical detector has 38 stages in the cascade,

~6000 features ¢
——
= Effect: more features —

= Arrange in a filter cascade:

= Classifier with highest weight comes first

- Or small sets of weak classifiers in one stage

= |f window fails one stage in cascade
— discard window

- Advantage: "early exit" if "clearly" non-face

% False Positives ;

less false positives 3 : 50 v Almost certainly
4
= Typical visualization: =
o
Receiver operating v
characteristic (ROC curve) :\:

o

G. Zachmann Massively Parallel Algorithms SS ' June 2014 Prefix-Sum 78



eeeee

= Final stage: only report face, if cascade
finds several nearby face windows

= Discard "lonesome" windows

G. Zachmann Massively Parallel Algorithms SS ' June 2014

Prefix-Sum

79



¢
Y visualization of the Algorithm kot

’ ‘.‘ -
P »
>

Adam Harv

(http://vimeo.com/12774628)
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Final remarks on Viola-Jones

= Pros:
= Extremely fast feature computation

= Scale and location invariant detector
- Instead of scaling the image itself (e.g. pyramid-filters), we scale the features

= Works also for some other types of objects
= Cons:

= Doesn't work very well for 45° views on faces

= Not rotation invariant
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